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Executive Summary 
 
This project was conceived with three major goals: (i) develop new probabilistic programming 
technology that addressed limitations of first-generation languages such as Church; (ii) 
demonstrate the capabilities of knowledge-based AI systems written using these new 
probabilistic programming languages, emphasizing reflective uses of probabilistic programming; 
and (iii) develop mathematical theory that addresses fundamental questions associated with 
probabilistic programs. Over the past four years, we have accomplished all three of these goals.  
 
Our research has yielded open-source probabilistic programming systems that have led to 
commercial deployments, sponsorship from other defense and intelligence sources, and 
multiple long-term academic collaborations. Our models of visual scene understanding and 
intuitive physics have had a significant impact on multiple AI fields, including winning an award 
at the leading computer vision conference (CVPR 2015), and inspiring follow-on projects at 
major industry AI labs (Microsoft Research, DeepMind, Facebook AI, Google). 
 
We have been invited to give a high-profile tutorial on this research at the upcoming NIPS 
conference, which is expected to have an audience of thousands of participants from across 
industry, academia and government, as well as a keynote at the O’Reilly AI conference and 
executive briefings at Intel and Microsoft. At the same time, this research opens the door to 
even more valuable opportunities for advancing both the basic science of human cognition and 
the engineering of robust autonomous systems.  
 
The main body of this report gives technical data and results on four key accomplishments 
chosen based on relevance for ARO. The first three are AI capability demonstrations that reflect 
advances towards goals #1 and #2, while goal #3 reflects advances in fundamental theory. 
 

1. Probabilistic programs for inferring the probable goals of people, drones, and cars from 
observations of their motion. (Goals 1 and 2) 

2. Probabilistic programs for inferring 3D scene structure from single images. (Goals 1 and 
2) 

3. AI-assisted data science via probabilistic programs that synthesize and query other 
probabilistic programs. (Goals 1 and 2) 

4. New theory and algorithms for estimating the accuracy of a broad class of approximate 
inference algorithms. (Goal 3) 

  



Goal 1 - Probabilistic Programming Systems 
 
Probabilistic modeling and inference have become central tools in modern computing. They 
provide a rigorous mathematical framework for interpreting data in light of modeling 
assumptions that leave room for uncertainty and ambiguity. Probabilistic modeling and inference 
are used in both real-time applications, such as inferring the probable location of self-driving 
cars from noisy sensor data and incomplete maps, and offline computations, such as identifying 
gene boundaries from sequence data. The models themselves are often produced by applying 
probabilistic inference algorithms to identify probable models from large spaces of possibilities, 
given sufficient data. 
 
The emerging field of probabilistic programming aims to formalize and automate aspects of 
probabilistic modeling and inference by integrating key ideas from probability theory with 
programming languages. Some probabilistic programming languages have thousands of users 
already. For example, Stan is a domain-specific probabilistic language for hierarchical Bayesian 
modeling, and is regularly used for data analysis in ecology and astrophysics. Other 
probabilistic languages have been used to produce prototypes based on modeling and 
inference that may not have been feasible to develop manually. For example, the BLOG 
language has been used to build a sensor fusion system for monitoring compliance with the 
Comprehensive Nuclear Test-Ban Treaty, interpreting data from hundreds of seismic, 
radionuclide, and hydroacoustic sensors from around the globe. A recent four-year program 
funded by the US Defense Advanced Research Projects Agency (DARPA) has catalyzed the 
development of several other languages and evaluated some of the productivity gains they can 
deliver. For example, some of these languages have been used to solve hard problems from 
computer vision (Kulkarni, T.D., Kohli, P., Tenenbaum, J.B., and Mansinghka, V., 2015), 
computer graphics (Richie, 2014), and data science (Saad, Casarsa, and Mansinghka, 2017; 
Saad and Mansinghka, 2016; Schaechtle, Saad, Radul, and Mansinghka, 2017) in under 100 
lines of code. 
 
 
 
 
 



 
Figure 1. An overview of probabilistic programming. Probabilistic programming is an 
emerging field at the intersection of probabilistic modeling and inference, programming 
languages, and systems software.  
 
 

 
Figure 2. Key technical ideas in probabilistic programming. Probabilistic programming 
languages enable users to (i) represent models using programs and (ii) represent key 
operations on models using meta-programs. One distinctive capability of the probabilistic 
programming languages we developed is that they enable users to customize the 
meta-programs used for learning and inference. 
 
 
 



BayesDB 
 
BayesDB is a probabilistic programming platform that aims to enable users to query the 
probable implications of their data as directly as SQL databases enable them to query the data 
itself. By combining ordinary SQL with three new primitives — SIMULATE, INFER, and 
ESTIMATE — users of BayesDB can detect predictive relationships between variables, retrieve 
statistically similar data items, identify anomalous data points and variables, infer missing 
values, and synthesize hypothetical subpopulations.  

 

 
Figure 3. BayesDB for AI assistance for data science. The default modeling assumptions that 
BayesDB makes are suitable for a broad class of problems, but statisticians can customize these 
assumptions when necessary. BayesDB also enables domain experts that lack statistical expertise 
to perform qualitative model checking and encode simple forms of qualitative prior knowledge. 
 
 
 

 

  



Picture 
 
Picture is a probabilistic programming language for scene understanding that allows 
researchers to express complex generative vision models while automatically solving them 
using fast general-purpose inference machinery. Picture provides a stochastic scene language 
that can express generative models for arbitrary 2D/3D scenes, as well as a hierarchy of 
representation layers for comparing scene hypotheses with observed images by matching not 
simply pixels, but also more abstract features (e.g., contours, deep neural network activations). 
Inference can flexibly integrate advanced Monte Carlo strategies with fast bottom-up data-driven 
methods. Thus both representations and inference strategies can build directly on progress in 
discriminatively trained systems to make generative vision more robust and efficient.  

 
 
Figure 4. An overview of Picture, a probabilistic programming language for 3D visual 
scene understanding. (a) shows the architecture of Picture models. (b) shows the inference 
strategies used to fit models to data. (c) shows renderings of sampled 3D models from the priors 
used in three applications. Picture has been used to write ~50 line programs that solve 
problems in 3D face modeling, 3D human pose estimation, and 3D object reconstruction. 
 

Venture 
 

Venture is an extensible platform for probabilistic meta-programming in which probabilistic 
generative models, probability density functions, and probabilistic inference algorithms are all 
first-class objects. Any Venture program that makes random choices can be treated as a 
probabilistic model defined over the space of possible executions of the program. Such 
probabilistic model programs can also be run while recording the random choices that they 
make. Unlike other probabilistic programming platforms, Venture allows model programs, 
density meta-programs, and inference meta-programs to be written as user-space code in a 
single probabilistic programming language. Venture is essentially a Lisp-like higher-order 
language augmented with two novel abstractions: (i) probabilistic execution traces, a first-class 



object that represents the sequence of random choices that a probabilistic program makes, and 
(ii) stochastic procedures, which encapsulate the probabilistic programs and meta-programs 
needed to allow simple probability distributions, user-space VentureScript programs, and foreign 
probabilistic programs to be treated uniformly as components of probabilistic computations. 
Venture also provides runtime support for stochastic regeneration of execution trace fragments 
that makes use of the programs and meta-programs of all stochastic procedures invoked during 
the execution of the original traced program.  
 

 
 

Figure 5. An overview of Venture. Users can specify models as programs, obtain traces of the 
stochastic choices made when these programs are run, and modify these traces using inference 
programs. 

 
 
 

 

 

  



Goal 2: AI Capabilities  
 
We demonstrated three knowledge-based AI capabilities: 
 

1. Inferring the probable goals of autonomous agents 
2. Inferring 3D models for visual scenes from single images 
3. AI-assisted data science, based on probabilistic programs for inferring multivariate 

probabilistic models from empirical data 
 

 
Figure 6. Example applications of probabilistic programming that were funded by our 
research on this program. 
 
 

Capability #1: Probabilistic programs for inferring the probable goals of 
autonomous agents 
 
Intelligent systems sometimes need to infer the probable goals of people, cars, and robots, 
based on partial observations of their motion.  Our research introduces a class of probabilistic 
programs for formulating and solving these problems. The formulation uses randomized path 
planning algorithms as the basis for probabilistic models of the process by which autonomous 
agents plan to achieve their goals. Because these path planning algorithms do not have 
tractable likelihood functions, new inference algorithms are needed. Our research proposes two 
Monte Carlo techniques for these “likelihood-free” models, one of which can use likelihood 



estimates from neural networks to accelerate inference. Our research demonstrates efficacy on 
three simple examples, each using under 50 lines of probabilistic code. 
 
Building on these ideas, we believe it is now possible to write probabilistic programs that 
simultaneously capture several of the core common-sense reasoning and perceptual capacities 
used by humans from an early age (as young as 18 months) to interact helpfully and 
cooperatively with others, and to implement inference in these models with the efficiency 
needed to deploy them in robots that can interact cooperatively with humans in real time. The 
key idea is to organize common-sense knowledge in terms of a ‘’probabilistic video game 
engine'' that can (i) simulate interactions between objects and intentional agents, and (ii) judge 
the compatibility of a hypothesized scene with the available sense data. Fast, bottom-up 
inference for familiar objects, agents, and scenarios can be done via neural network proposals 
produced using standard Deep Learning techniques. Real-time inference for novel scenarios will 
be performed via massively parallel Monte Carlo algorithms. We have begun implementing this 
architecture using a new a high-performance probabilistic programming runtime system that we 
are developing, called Gen.jl, written in Julia to take advantage of modern many-core 
processors. Over the coming year, we hope to begin evaluating its predictions to behavioral 
studies of children and adults, and to use this architecture as the foundation for developing a 
range of autonomous system. 
 

 
Figure 7. An overview of our probabilistic programming approach to inferring probable 
goals from observed agent motion. 
 
 
 



 

 
Figure 8. Goal inferences qualitatively cohere with human common-sense judgments. 
Small changes to the environment can produce large changes in inferences about 
probable goals. 
 
In Scenario 1 (Figure 8, left), the drone’s goal is more likely outside the enclosure, since it did 
not go directly into the enclosure through the bottom. In Scenario 2 (right), with bottom access 
to the enclosure, the goal is most likely outside the enclosure.  
 

 
 
Figure 9. Comparison of three Metropolis-Hasting strategies for goal inference, which 
shows that neural Nested Inference MH converges faster than the other strategies.  
(a), (b) and (c) show 960 independent approximate posterior goal samples (red) obtained using 
each strategy for similar run-times, given known map, start location (orange), and observations 
(white). Cascading Resimulation MH (CR) and Resimulation Nested Inference MH (RNI) do not 
give accurate inferences in real-time. Neural Nested Inference MH (NNI) uses a neural network 



and gives accurate results in real-time (median 115 ms per sample). (d) shows estimated KL 
divergences from gold-standard samples to each of the strategies as the number of MH 
transitions are varied. Circles in (d) show the amount of computation used for (a,b,c). 
 
 
 

 
Figure 10. An overview of a Venture program for inferring whether or not two people are 
headed to the same destination. (a) and (b) show two frames from a movie, with goal 
inferences overlaid. (c) shows Venture source code for the probabilistic model. (d) shows 
judgments from 30 human responders of the likelihood over time that the individuals have 
different destinations, for the video sequence spanned by the frames in (a,b). The human 
judgments qualitatively agree with the automated inferences. (e) shows a Bayesian network 
schematic of the dependencies in the underlying probabilistic program from (c). 
 
 
 
 
 
 
 



Capability #2: Probabilistic programs for inferring 3D scene structure from 
single images  
 
Probabilistic scene understanding systems aim to produce high-probability descriptions of 
scenes conditioned on observed images or videos, typically either via discriminatively trained 
models or generative models in an “analysis by synthesis” framework. Discriminative 
approaches lend themselves to fast, bottom-up inference methods and relatively 
knowledge-free, data-intensive training regimes, and have been remarkably successful on many 
recognition problems. Generative approaches hold out the promise of analyzing complex 
scenes more richly and flexibly, but have been less widely embraced for two main reasons: 
Inference typically depends on slower forms of approximate inference, and both model-building 
and inference can involve considerable problem-specific engineering to obtain robust and 
reliable results. These factors make it difficult to develop simple variations on state-of-the-art 
models, to thoroughly explore the many possible combinations of modeling, representation, and 
inference strategies, or to richly integrate complementary discriminative and generative 
modeling approaches to the same problem. More generally, to handle increasingly realistic 
scenes, generative approaches will have to scale not just with respect to data size but also with 
respect to model and scene complexity. This scaling will arguably require general-purpose 
frameworks to compose, extend and automatically perform inference in complex structured 
generative models – tools that for the most part do not yet exist. 
 
Picture is a probabilistic programming language that aims to provide a common representation 
language and inference engine suitable for a broad class of generative scene perception 
problems. We see probabilistic programming as key to realizing the promise of “vision as 
inverse graphics”. Generative models can be represented via stochastic code that samples 
hypothesized scenes and generates images given those scenes. Rich deterministic and 
stochastic data structures can express complex 3D scenes that are difficult to manually specify. 
Multiple representation and inference strategies are specifically designed to address the main 
perceived limitations of generative approaches to vision. Instead of requiring photo-realistic 
generative models with pixel-level matching to images, we can compare hypothesized scenes to 
observations using a hierarchy of more abstract image representations such as contours, 
discriminatively trained part-based skeletons, or deep neural network features. Available Markov 
Chain Monte Carlo (MCMC) inference algorithms include not only traditional 
Metropolis-Hastings, but also more advanced techniques for inference in high-dimensional 
continuous spaces, such as elliptical slice sampling, and Hamiltonian Monte Carlo which can 
exploit the gradients of automatically differentiable renderers. These top-down inference 
approaches are integrated with bottom-up and automatically constructed data-driven proposals, 
which can dramatically accelerate inference by eliminating most of the “burn in” time of 
traditional samplers and enabling rapid mode-switching. 
 



 
 
Figure 11. Picture inference on representative faces, answering the question "what does 
a given face probably look like when rotated or lit differently?". The first column shows the 
input images. The remaining columns show renderings of the inferred 3D models from a 
~50-line probabilistic program written in Picture. This example shows that a short probabilistic 
program is applicable to non-frontal faces and provides reasonable parses, using only 
general-purpose inference machinery built into Picture. 
 
 



 
Figure 12. Picture code [left] for the 3D face application from Figure 11, along with a 
schematic description of the dependencies within that picture program [right]. 

 
 



 
Figure 13. Quantitative and qualitative results for 3D human pose program. Our research 
on Picture quantitatively evaluated the pose program on a dataset collected from various 
sources, images with significant occlusion in the “person sitting” category, and the Internet. On 
the given dataset, as shown in the error histogram in (a), our model is more accurate on 
average than just using a DPM based human pose detector. The histogram shows average 
error for all methods considered over the entire dataset separated over the body part. 



 
Figure 14. Data-driven proposal learning for 3D human pose program. (a) Random 
program traces sampled from the prior during training. The colored stick figures are the results 
of applying DPM pose model on the hallucinated data from the program. (b) Representative test 
image. (c) Visualization of the representation layer v(ID). (d) Result after inference. (e) Samples 
drawn from the learned bottom-up proposals conditioned on the test image are semantically 
close to the test image and results are fine-tuned by top-down inference to close the gap. As 
shown on the log-1 plot, we run about 100 independent chains with and without the learned 
proposal. Inference with a mixture kernel of learned bottom-up proposals and single-site MH 
consistently outperforms baseline in terms of both speed and accuracy.  
 
 
For inference on faces, we obtained a 3D deformable face model trained on laser scanned 
faces. After training with this dataset, the model generates a mean shape mesh and mean 
texture map, along with principal components and eigenvectors. A new face can be rendered by 
randomly choosing coefficients for the 3D model and running the program. We evaluated the 
program on a held-out test set of 2D projected images of 3D laser scanned data. We 
additionally produced a dataset of about 30 images from the held-out set with different 
viewpoints and lighting conditions. 
 
During experimentation, we discovered that since the number of latent variables is large (8 sets 
of 100 dimensional continuous coupled variables), elliptical slice moves are significantly more 
efficient than Metropolis-Hastings proposals. We also found that adding learned data-driven 
proposals significantly outperforms using only the elliptical slice proposals in terms of both 
speed and accuracy. We trained the data-driven proposals from around 100k program traces 
drawn from unconditional runs. The summary statistic function νdd used were the top 
convolutional-layer features from the pre- trained ImageNet CNN model. The conditional 



proposal density Pdensity was a multivariate kernel density function over cached latents with a 
Gaussian Kernel (0.01 bandwidth).  
 
Many other academic researchers have used 3D deformable face models in an 
analysis-by-synthesis based approach. However, Picture is the only system to solve this as well 
as many other unrelated computer vision problems using a general-purpose system. Moreover, 
the data-driven proposals and abstract summary statistics (top convolutional-layer activations) 
allow us to tackle the problem without explicitly using 2D face landmarks as compared to 
traditional approaches. 
 
 
We also developed a Picture program for parsing 3D poses of articulated humans from single 
images. Existing approaches typically require custom inference strategies and significant 
task-specific model engineering. In our probabilistic code, we use an existing base mesh of a 
human body, defined priors over bone location and joints, and enable the armature skin-modifier 
API via Picture’s Blender engine API. The latent scene Sρ in this program can be visualized as 
a tree with the root node around the center of the mesh, and consists of bone location variables, 
bone rotation variables and camera parameters. The representation layer ν in this program uses 
fine-grained image contours and the comparator is expressed as the probabilistic chamfer 
distance. 
 
We evaluated our program on a dataset of humans performing a variety of poses. This dataset 
was chosen to highlight the distinctive value of a graphics model-based approach, emphasizing 
certain dimensions of task difficulty while minimizing others: While graphics simulators for 
articulated bodies can represent arbitrarily complex body configurations, they are limited with 
respect to fine-grained appearance (e.g., skin and clothing), and fast methods for fine-grained 
contour detection currently work well only in low clutter environments.  
We compared this approach with the discriminatively trained Deformable Parts Model (DPM) for 
pose estimation (referred as DPM-pose), which is notably a 2D pose model. As shown in Figure 
13b, images with people sitting and heavy occlusion are very hard for the discriminative model 
to get right – mainly due to “missing” observation signal – while our model-based approach can 
handle these reasonably if we constrain the knee parameters to bend only in natural ways in the 
prior. Most of our model’s failure cases, as shown in Figure 13b, are in inferring the arm 
position; this is typically due to noisy and low quality feature maps around the arm area due to 
its small size. 
 
In order to quantitatively compare results, we project the 3D pose obtained from our model to 
2D key-points. As shown in Figure 13a, our system localizes these key-points significantly better 
than DPM-pose on this dataset. However, DPM-pose is a much faster bottom-up method, and 
we explored ways to combine its strengths with our model-based approach, by using it as the 
basis for learning data-driven proposals.  

 
 



Capability #3 - AI-assisted data science for time series 
 
There is a widespread need for techniques that can discover structure from time series data. 
Recently introduced techniques such as Automatic Bayesian Covariance Discovery (ABCD) 
provide a way to find structure within a single time series by searching through a space of 
covariance kernels that is generated using a simple grammar. While ABCD can identify a broad 
class of temporal patterns, it is difficult to extend and can be brittle in practice. Our research 
shows how to extend ABCD by formulating it in terms of probabilistic program synthesis. The 
key technical ideas are to (i) represent models using abstract syntax trees for a domain-specific 
probabilistic language, and (ii) represent the time series model prior, likelihood, and search 
strategy using probabilistic programs in a sufficiently expressive language. The final probabilistic 
program is written in under 70 lines of probabilistic code in Venture. Our research demonstrates 
an application to time series clustering that involves a non-parametric extension to ABCD, 
experiments for interpolation and extrapolation on real-world econometric data, and 
improvements in accuracy over both non-parametric and standard regression baselines. 
 

 
 
Figure 15. A comparison of our probabilistic program for AI-assisted time series 
extrapolation and interpolation (top) to regression modeling (bottom). The probabilistic 
program captures qualitative structure that regression modeling does not. 
 
The figure above (a) shows extrapolation performance on a dataset of airline passenger volume 
between 1949 and 1960. The probabilistic program detects the linear trend with periodic 
variation, leading to very accurate predictions. (b) shows interpolation on a dataset of solar 
radiation between the years 1660 and 2010. The probabilistic program successfully models the 
qualitative change at around 1760, which correctly results in different interpolation 
characteristics at both ends. In contrast, Bayesian linear regression is forced to treat such 



structural effects as unmodeled noise (Schaechtle, Saad, Radul, and Mansinghka, 2017). 
 

 
Figure 16. Our probabilistic program implements functionality from the ‘‘Automated 
Statistician'' but using ~100x fewer lines of code.  
 

 
Figure 17. Overview of the architecture of our probabilistic program for AI-assisted time 
series analysis.  
 
 

 
 
Figure 18. Example inputs and outputs from the internal components of our AI-assisted 
time series analysis program from Figure 17. Left: A symbolic structure generated by the 
AST prior.  Center: Equivalent in Venture, produced by the AST interpreter.  Right: Executions 
of the model program. 



 



 
Figure 19. Probabilistic program source code for AI-assisted time series analysis. 
 
 
  



Capability #4: AI-assisted data science for databases 
 
We have also developed BayesDB, a domain-specific probabilistic programming platform for 
probabilistic data analysis. BayesDB provides AI assistance for routine data analysis tasks, 
including data quality assessment, exploratory analysis, and predictive modeling. We have 
published 3 journal-length manuscripts (total ~150 pages) and 2 conference-length papers (~16 
pages total) on BayesDB and applications.  
 
BayesDB can be viewed as an AI platform for data science that aims to let domain experts solve 
problems in seconds or minutes that otherwise take hours or days for someone with good 
statistical judgment.  
 
 

 
Figure 20. BayesDB provides AI assistance for data science. 
AI is applicable to the entire spectrum of model understanding; an exploratory understanding of 
data can be done with AI only, but a mechanistic understanding would need to be done with AI 
and custom overrides.  
 
 



 
Figure 21. An example population construction in BayesDB [left] and an overview of the 
BayesDB architecture [right].  On the left, a population is constructed from a .CSV file; an 
ensemble of baseline models are built via automatic composition with CrossCat (reflecting some 
domain knowledge); and queried for predictions. 
 
 
 
 



 
 
Figure 22. Examples of AI-assisted data science with BayesDB. We have applied BayesDB 
to a broad class of real-world databases, including extracts from the Allen Brain Atlas, the FDA 
Adverse Events database, and the Fragile Families database of at-risk families and children. 
Components of BayesDB have been the basis of two VC-backed startup companies; tutorials at 
the O'Reilly AI conference in NYC; and executive briefings at Intel. We are also engaged in 
early conversations surrounding transfer of BayesDB to DoD users via MIT Lincoln 
Laboratories, and to the intelligence community (IC) via conversations with IARPA leadership. 
 
 



 
Figure 23. An overview of the main technical challenges involved in building BayesDB, 
and the associated publications that show how we addressed them. 
 
 
 
 
 
 
 
 
 

  



Goal 3 - Fundamental Theory  
Approximate probabilistic inference algorithms are central to many fields. Examples include 
sequential Monte Carlo inference in robotics, variational inference in machine learning, and 
Markov chain Monte Carlo inference in statistics. A key problem faced by practitioners is 
measuring the accuracy of an approximate inference algorithm on a specific dataset.  
 
We have developed fundamental theory that addresses this problem. This theory leads to a new 
estimator for the accuracy of approximate inference algorithms called AIDE (short for "auxiliary 
inference divergence estimator'). AIDE is based on the observation that inference algorithms 
can be treated as probabilistic models and the random variables used within the inference 
algorithm can be viewed as auxiliary variables. This view leads to a new estimator for the 
symmetric KL divergence between the output distributions of two inference algorithms. Our 
research illustrates application of AIDE to algorithms for inference in regression, hidden Markov, 
and Dirichlet process mixture models. The experiments show that AIDE captures the qualitative 
behavior of a broad class of inference algorithms and can detect failure modes of inference 
algorithms that are missed by standard heuristics. 

 
Figure 24. Using AIDE to estimate the accuracy of a target inference algorithm relative to a 
gold-standard inference algorithm. AIDE is a Monte Carlo estimator of the symmetrized 
Kullback-Leibler (KL) divergence between the output distributions of two inference algorithms. 
AIDE uses meta-inference: inference over the auxiliary random choices made by an inference 
algorithm. 
 
 



 
Figure 25. Comparing the bias of AIDE for different types of inference algorithms. Left: 
AIDE estimates for SMC converge to zero, as expected. Right: AIDE estimates for variational 
inference converge to a nonzero asymptote that depends on the variational family. Middle: The 
symmetrized divergence between MH and the posterior converges to zero, but AIDE 
over-estimates the divergence in expectation. Although increasing the number of meta-inference 
runs Mt reduces the bias of AIDE, AIDE is not yet practical for measuring MH accuracy due to 
inaccurate meta-inference for MH. The bias of AIDE is acceptable for SMC, and AIDE is 
unbiased for variational inference, but better MCMC meta-inference algorithms are needed to 
make AIDE practical for estimating the accuracy of MH. 
 



Figure 26. The algorithm for AIDE. 
The generic AIDE algorithm above is defined in terms of abstract generative inference models 
and meta-inference algorithms.  
 
 

 
 
Figure 27. AIDE is able to detect when an approximate inference algorithm misses a 
posterior mode. Left: A bimodal posterior density, with kernel estimates of the output densities 
of importance sampling with resampling (SIR) using two proposals. The ‘broad’ proposal (blue) 
covers both modes, and the ‘offset’ proposal (pink) misses the ‘L’ mode. Middle: AIDE detects 
the missing mode in offset-proposal SIR. Right: Log marginal likelihood estimates suggest that 
the offset-proposal SIR is nearly converged. 



 
 
 

 
Figure 28. Comparison of exact posterior and ‘best-in-class’ approximate algorithm as 
gold-standard, when measuring accuracy of target inference algorithms with AIDE.  
We consider inference in an HMM, so that exact posterior sampling is tractable using dynamic 
programming. Left: Ground truth latent states, posterior marginals, and marginals of the the 
output of a gold-standard and three target SMC algorithms (A,B,C) for a particular observation 
sequence. Right: AIDE estimates using the exact gold-standard and using the SMC 
gold-standard are nearly identical. The estimated divergence bounds decrease as the number 
of particles in the target sampler increases. The optimal proposal outperforms the prior 
proposal. Increasing Mt tightens the estimated divergence bounds. We used Mg = 1. 
 
 
 

 
Figure 29. Contrasting AIDE against a heuristic convergence diagnostic for evaluating 
the accuracy of approximate inference in a Dirichlet process mixture model  
The heuristic compares the expected number of clusters under the target approximation to the 
expectation under the gold-standard algorithm. White circles identify single-particle 



likelihood-weighting, which samples from the prior. AIDE clearly indicates that single-particle 
likelihood-weighting is inaccurate, but the heuristic suggests it is accurate. Probe functions like 
the expected number of clusters can be error prone measures of convergence because they 
only track convergence along a specific projection of the distribution. In contrast, AIDE 
estimates a joint KL divergence. Shaded areas in both plots show the standard error. The 
amount of target inference computation used is the same for the two techniques, although AIDE 
performs a gold-standard meta-inference run for each target inference run. 
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